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Axial vacuum symmetry of the unified gauge theories with 
the gravitational mechanism of instability 

V M Nikolaenko 
USSR State Committee for Standards, Moscow, USSR 

Received 25 March 1980. in final form 28 October 1980 

Abstract. The problem of stable-state determination is considered in unified gauge theories 
involving gravitation. The gravitational fields are examined at a classical level. The 
self-consistent set of field equations is studied in the semiclassical approach. A new 
determination of stable states is given. If the conditions of the determination are not 
satisfied then the vacuum state may be metastable. For the case of axial symmetry the 
metastable 2-type states are shown to cancel if these states are symmetric. 

1. Introduction 

The theory of gauge fields led to the construction of the unified theory of weak and 
electromagnetic interactions (Weinberg 1967, Salam 1968). The possibility of 
unification of the strong interaction is discussed. At  the same time a gauge approach to 
gravitation is known. One may hope, therefore, that the gauge treatment of gravitation 
(Kibble 1961) will allow us to include this interaction in the framework of the general 
scheme. 

In the present work we use the classical gauge theory of gravitation to examine the 
problem of how gravitational fields, which are considered here at a classical level, can 
provide stability of the vacuum states in the unified gauge theories. 

It is well known that a state is stable if the time of its existence is infinite. When a 
time of existence t is finite a vacuum state is called metastable. At  t + O  a state is 
unstable. In the framework of the unified gauge theories a symmetric vacuum stale must 
be unstable since the massless fields become massive only in the asymmetric vacuum 
states. If, for instance, a symmetric state is metastable the mass spectrum is not formed 
during the finite time of its existence. 

This fact may occur when the interaction of quantum fields is described in a curved 
space-time. Unlike previous works (Domokos 1976, Grib and Mostepanenko 1977) 
our assumption about the consistency of gravitational fields with quantum fields by 
means of the semiclassical field equations is here principal. 

As has been shown in earlier works (Nikolaenko 1977a, b, 1980) the stable vacuum 
state definition in the presence of gravitation is transformed to the following definition. 

In systems with spontaneous symmetry breaking, where the mechanism of instabil- 
ity is realised by taking into account the classical gravitational fields, the vacuum state is 
stable when: (i) the vacuum is determined by the minimum of the Higgs potential or (ii) 
there exists a gravitational topological charge which is conserved. 
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If both these conditions are not fulfilled, then the vacuum may be metastable. In the 
self-consistent approach the problem arises as to which type of gravitational field 
symmetry corresponds to the metastable vacuum states. In the present work we 
consider the axially symmetric gravitational fields when the axis of symmetry Z exists in 
each point of a curved space-time. One may assume that the existence of the 2 axis 
specifies a vacuum state as a metastable one. We call this Z-type metastability. 

The purpose of this paper is to prove the following proposition. 
When the vacuum state is symmetric the Z-type metastability is cancelled in the 

The proof of this proposition without loss of generality will be related to the 
self-consistent unified gauge theories with gravitation. 

SU(2) R U(1)-gauge invariant unified theory of Weinberg and Salam. 

2. The Lagrangian and the field equations 

It is known that introduction of the imaginary bare Higgs mass is unnecessary when 
gravitation is taken into account. In this approach Higgs' field is not massive but 
conformally invariant (Domokos 1976, Grib and Mostepanenko 1977). Unlike the 
traditional theory, where the effective mass of Higgs field MH is a free parameter, the 
mass MH is here defined (Nikolaenko et a1 1981). 

In our version the complete Lagrangian includes the gravitational part Zg. This 
Lagrangian, as Lagrangians for other gauge fields, must be quadratic in strength. Since 
the curvature tensor may be interpreted as a strength of the gravitational field the part 
Zg is represented by the following linear functional 

Zg = Zg[9?z'] 

where 2' denotes a linear combination of the squares of the curvature tensor and its 
contractions. 

In general the Lagrangian (2.1) is not invariant with respect to the conformal 
transformations: 

dSt2 = A2(x)  dS2. (2.2) 

It is easy to show at the same time that (2.1) is invariant under the Weyl group 
combining the conformal transformations (2.2) and the gauge transformations: 

Y ' b )  = A x ) .  (2.3) 

Here y ( x )  is a connection one-form. The coefficients of the form y ( x )  in the case of the 
Riemannian connection are the Christoff el symbols r f k .  

To prove the invariance of the quadratic Lagrangian under the Weyl trans- 
formations (2.2) and (2.3) let us consider the quadratic terms R;lmR:lm, RikRik and R 2 .  
Actually, using the formula 

(2.4) 
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It follows that 

G R  gimR i k i m  = C g R  iimR :Im 

G R  ikR t i k  = C g R i k R  ik  

p g R  t 2 -  - C g R 2 .  

2'~ = ~g[-V"cp*V,cp +iRcp*cp - A  (cp*cp)*]. 

We take as our Lagrangian for the Higgs field 

(2.6) 

Here the scalar curvature R > 0 and R = gkmRiim. The signature of the metric is chosen 
as (+++-), The self-action constant A > 0 and the scalar field 

cp = + icp2). 

As in the Weinberg-Salam model, the derivative V is invariant under the group of phase 
transformations U(1). When V acts on vectors or tensors this operator is invariant, 
simultaneously, under the group of coordinate transformations. The field cp is con- 
formally transformed under (2.2) as follows 

c p t  = K ' c p .  (2.7) 

When the connection is Riemannian, i.e. y j k  = r j k ,  the Higgs field equation cor- 
responding to the Lagrangian (2.6) is invariant under the group of conformal trans- 
formations (Penrose 1964, Chernikov and Tagirov 1968). It should be emphasised that 
the Higgs field (2.6) for the Riemannian connection is also invariant under the Weyl 
transformations restricted by the condition A = constant, the so-called scale trans- 
formations. But the gravitational part L!?g is invariant with respect to the complete Weyl 
group. 

From (2.6) it follows that the minimum of the Higgs field potential is given by 

77' = R/12A (2.8) 

where 

77 = (cp) = constant. (2.9) 

Quantisation of the Higgs field near its minimum gives the effective Higgs mass MH not 
equal to zero and 

h'fH = 2 77 = a. (2.10) 

Relations (2.8) and (2.9) mean the spontaneous breakingof gauge symmetry. In our 
version this symmetry breaking involves the breaking of conformal symmetry. But the 
scale invariance remains as R = constant and A = constant according to (2.8) and (2.9). 

The first-order variational formalism is used, where the metric components g i k  and 
the connection coefficients y j k  are considered as two sets of independent variables. 
Unlike the second-order variational formalism the gravitational field equations in this 
case form two sets of second-order differential equations in g i k  and Y i k .  

At the quantum level this theory contains not only gravitons but particles cor- 
responding to the torsion field (Hehl et al 1976, Popov 1976). One may hope, 
therefore, that this theory avoids the well known difficulty with 'ghosts' (Nouri- 
Moghadam and Taylor 1976). 
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Now the gravitational fields are considered at a classical level and the field equations 
as in Melnikov and Orlov (1979) have the form 

83glsglk = K ( T f y t ) ) q  (2.1 1) 

where K is the gravitational Einstein constant and ( is the vacuum expectation 
value for the energy momentum tensor of quantum fields. The values are averaged in 
the degenerate vacuum state 77. The right-hand side of equation (2.11) is defined by the 
single Higgs field (2.6), since the vacuum expectation values for the other quantum 
fields are equal to zero. 

The field equation (2.11) is considered as the equation for the asymmetric vacuum 
state, where conditions (2.8) and (2.9) are fulfilled. In particular, it follows that the 
scalar curvature 

R =constant. (2.12) 

As has been shown earlier (Nikolaenko 1980) it follows from (2.12) that the effective 
Lagrangian 3fff) is 

3y1= LZE + 3g[%2] (2.13) 

where zE = C g R ,  and LZg[%’] is defined as before. It is significant that our version, 
unlike the purely quadratic gravitational theories, involves the massive sources of the 
gravitational field. 

Since the gravitational fields here are considered at a classical level we examine the 
field equations in the limit of vanishing torsion, i.e. the torsion form 

Z(x) = 0. 

At the same time this restriction may be explained by the fact that the field equations 
will be studied in the symmetric vacuum state, where it is natural to assume the most 
simple space-time geometry. 

The torsion form Z(x) is known as 

C = D 0  

where D is a complete (covariant) derivative and O ( x )  is a field of frames. Thus, our 
restriction may be interpreted as a gauge given by the following relation 

D0 = 0. (2.14) 

The constraints 

8 g l 8 y j k  = 0 (2.15) 

arise under the gauge (2.14) as it must be in the framework of the first-order variational 
formalism. In general, these c,onstraints redefine the set of equations (2.11). The 
problem of non-trivial consistency of (2.11) and (2.15) was considered earlier 
(Nikolaenko 1976, 1977a, b, 1980). In particular, it was proved there that our version 
does not contradict the basic experimental tests of the Einstein theory and coincides 
with its theoretical predictions in some cases of physical interest. It follows from these 
works that equations (2.15), (2.11) and (2.14) have the form 

hOVaRaijk = 0 (2.16) 

(2.17) Rik -igikR +3h‘q2gik +ho/hl(2RilR: +2Riik1~”-gikHjlRi‘) = o .  
Here A. and AI are new coupling constants. 
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3. Axial vacuum symmetry 

Let us consider the gravitational fields with axial symmetry for the case of the symmetric 
vacuum state in the limits: 

77+0 R + O .  (3.1) 

Then the field equations (2.16) and (2.17) are trivially satisfied if the vacuum Einstein 
equation 

Rik = 0 (3.2) 

is fulfilled. 
Since the gravitational model of the vacuum is simplest in the Einstein theory we 

exclude those solutions of (2.16) and (2.17) which are not solutions of the vacuum 
equation (3.2). We shall prove that this natural assumption cancels all the axially 
symmetric solutions of the field equations (2.16) and (2.17). 

The most general metric for the space-time with axial symmetry is given by the form 
(Synge 1963) 

dS2= a2(dr’+dz2)+r2y-2 dcp2-y2 dt2 (3.3) 
2 3 where a and y are arbitrary functions in variables r and z. Put r = xl ,  z = x , cp = x , 

t = x4. Then the orthonormalisable tetrad corresponding to the metric (3.3) is 

O1 = a  dxl 

O 3  = ry-’ dx3 

0 2 =  a dx2 

O4 = y dx4. 
(3.4) 

Applying the formula for the tensorial curvature two-form Rii as follows 

and denoting 

for the numeral-valued curvature form one obtains 

= a l ( P v  P )  +a2(R v R ) + a 3 ( P  v P)+a4(x’ v x’) 
+as( Y‘  v Y’)  + U6(d v 0) + a,(R v P) + ag(X’ v Y’) .  (3.7) 

Here A and v are the exterior and symmetrised products, respectively. The values of 
the coefficients a ~ ,  a2,. . . , a8 are written in the appendix (Al).  

Substituting (3.7) into the equation (2.1 7), considered in the limits (3.1), one obtains 
the set of five algebraic equations in the coefficients a l ,  a2, . . . , a8 which are denoted in 
the appendix (A2). To study this set it is necessary to use the constraints (2.16). It is 
enough to apply an algebraic consequence of the equations (2.16) which it is easy to 
obtain rewriting (2.16) in the form 

AoVaR,,,k = Ao(V,Rk, -vkRIr)  = 0 
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and then covariantly differentiating it and using the differential Ricci identity. One 
obtains, finally, 

R;(iqRj)a = 0. (3.8) 

Here the brackets denote the cyclic permutation of indices. 

denoted in the appendix as (A3). These equations are additional to the set (A2). 
Substituting (3.7) into the equation (3.8), one obtains the set of algebraic equations 

The investigation of the set (A3) leads to the equality 

a7 = as. 

Applying formulae ( A l )  here, one has that 

a f f / a t  = 0 a = a ( r ) .  (3.9) 

Further investigation of the sets (A2), (A3) and formulae (Al) ,  where the restriction 
(3.9) is used, shows that equations (2.16) and (2.17) are not consistent in the limits (3.1). 
Thus, the field equations do not have axially symmetric solutions in the case of a 
symmetric vacuum state. 

4. Conclusion 

We have investigated some aspects of the problem of stable-state determination in the 
unified gauge theories involving gravitation. The gravitational fields were considered at 
a classical level. It was suggested that the gravitational Lagrangian is Weyl invariant. 
The conformal invariance was chosen as a main principle for construction of the Higgs 
form. 

The theorem about the 2-type metastability free vacuum was proved. The gauge 
(2.14) which is equivalent to vanishing torsion and the vacuum Einstein equations were 
used. These are the most general restrictions on symmetries of the ground vacuum 
state. For asymmetric vacuum states when these conditions are not satisfied the 
problem of metastable vacuum existence is more complicated. A detailed discussion of 
this question will be presented elsewhere. 
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where 

aff 
ff. =--I 

' ax' 

a2ff a2 Y a . .  =- Yii =- 
' I  axi ax' ax' ax" 

2.  Using the equation R = 0 which is equivalent to the relation a1 +a2+a3-a4-  
a5 - a6 = 0 one redenotes the coefficients: 

a l  = a4 = b ,  

a3 = a6 = b3 

a l  = a6 = b5 

a 2 = a 5 = b 2  

a l  = a5 = b4 

a7 = 66, a8 = b7. 

Equations (2.17) are equivalent to the following set of algebraic equations: 
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